Mining Sequential Relations from Multidimensional Data Sequence for Prediction

نویسندگان

  • Heng Tang
  • Stephen Shaoyi Liao
  • Sherry X. Sun
چکیده

By analyzing historical data sequences and identifying relations between the occurring of data items and certain types of business events we have opportunities to gain insights into future status and thereby take action proactively. This paper proposes a new approach to cope with the problem of prediction on data sequence characterized by multiple dimensions. The proposed relation mining approach improves the existing sequential pattern mining algorithm by considering multidimensional data sequences and incorporating time constraints. We demonstrate that multidimensional relations extracted by our approach are an enhancement of single dimensional relations by showing significantly stronger prediction capability, despite of the substantial work done in the latter area. In addition, matching algorithm based on the obtained relations is proposed to make prediction. The effectiveness of the proposed methods is validated by experiments conducted on a mobile user context dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional Sequential Pattern Mining

Data mining is the task of discovering interesting patterns from large amounts of data. There are many data mining tasks, such as classification, clustering, association rule mining, and sequential pattern mining. Sequential pattern mining is the process of finding the relationships between occurrences of sequential events, to find if there exists any specific order of the occurrences. It is a ...

متن کامل

From Sequence Mining to Multidimensional Sequence Mining

Sequential pattern mining has been broadly studied and many algorithms have been proposed. The first part of this chapter proposes a new algorithm for mining frequent sequences. This algorithm processes only one scan of the database thanks to an indexed structure associated to a bit map representation. Thus, it allows a fast data access and a compact storage in main memory. Experiments have bee...

متن کامل

Approaches for Pattern Discovery Using Sequential Data Mining

In this chapter we first introduce sequence data. We then discuss different approaches for mining of patterns from sequence data, studied in literature. Apriori based methods and the pattern growth methods are the earliest and the most influential methods for sequential pattern mining. There is also a vertical format based method which works on a dual representation of the sequence database. Wo...

متن کامل

Mining Multidimensional Sequential Patterns over Data Streams

Sequential pattern mining is an active field in the domain of knowledge discovery and has been widely studied for over a decade by data mining researchers. More and more, with the constant progress in hardware and software technologies, real-world applications like network monitoring systems or sensor grids generate huge amount of streaming data. This new data model, seen as a potentially infin...

متن کامل

Multi-Dimensional Relational Sequence Mining

The issue addressed in this paper concerns the discovery of frequent multi-dimensional patterns from relational sequences. The great variety of applications of sequential pattern mining, such as user profiling, medicine, local weather forecast and bioinformatics, makes this problem one of the central topics in data mining. Nevertheless, sequential information may concern data on multiple dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008